Constraint handling rules. Compositional semantics and program transformation

نویسنده

  • Paolo Tacchella
چکیده

This thesis intends to investigate two aspects of Constraint Handling Rules (CHR). It proposes a compositional semantics and a technique for program transformation. CHR is a concurrent committed-choice constraint logic programming language consisting of guarded rules, which transform multi-sets of atomic formulas (constraints) into simpler ones until exhaustion [Frü06] and it belongs to the declarative languages family. It was initially designed for writing constraint solvers but it has recently also proven to be a general purpose language, being as it is Turing equivalent [SSD05a]. Compositionality is the first CHR aspect to be considered. A trace based compositional semantics for CHR was previously defined in [DGM05]. The reference operational semantics for such a compositional model was the original operational semantics for CHR which, due to the propagation rule, admits trivial non-termination. In this thesis we extend the work of [DGM05] by introducing a more refined trace based compositional semantics which also includes the history. The use of history is a well-known technique in CHR which permits us to trace the application of propagation rules and consequently it permits trivial non-termination avoidance [Abd97, DSGdlBH04]. Naturally, the reference operational semantics, of our new compositional one, uses history to avoid trivial non-termination too. Program transformation is the second CHR aspect to be considered, with particular regard to the unfolding technique. Said technique is an appealing approach which allows us to optimize a given program and in more detail to improve run-time efficiency or spaceconsumption. Essentially it consists of a sequence of syntactic program manipulations

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specialization of Concurrent Guarded Multi-set Transformation Rules

Program transformation and in particular partial evaluation are appealing techniques for declarative programs to improve not only their performance. This paper presents the first step towards developing program transformation techniques for a concurrent constraint programming language where guarded rules rewrite and augment multi-sets of atomic formulae, called Constraint Handling Rules (CHR). ...

متن کامل

A complete and terminating execution model for Constraint Handling Rules

We observe that the various formulations of the operational semantics of Constraint Handling Rules proposed over the years fall into a spectrum ranging from the analytical to the pragmatic. While existing analytical formulations facilitate program analysis and formal proofs of program properties, they cannot be implemented as is. We propose a novel operational semantics ω!, which has a strong a...

متن کامل

Proceedings of CHR 2005, Second Workshop on Constraint Handling Rules

This book contains the Proceedings of CHR 2005, the Second Workshop on Constraint Handling Rules, held at the occasion of ICLP 2005 in Sitges (Spain) on October 5, 2005. The Constraint Handling Rules (CHR) language has become a major declarative specification and implementation language for constraint reasoning algorithms and applications. Algorithms are often specified using inference rules, r...

متن کامل

Transactions in Constraint Handling Rules

CHR is a highly concurrent language, and yet it is by no means a trivial task to write correct concurrent CHR programs. We propose a new semantics for CHR, which allows specifying and reasoning about transactions. Transactions alleviate the complexity of writing concurrent programs by offering entire derivations to run atomically and in isolation. We derive several program transformations based...

متن کامل

Program Verification using Constraint Handling Rules and Array Constraint Generalizations

The transformation of constraint logic programs (CLP programs) has been shown to be an effective methodology for verifying properties of imperative programs. By following this methodology, we encode the negation of a partial correctness property of an imperative program prog as a predicate incorrect defined by a CLP program P , and we show that prog is correct by transforming P into the empty p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008